Bihar Board 11th Biology Subjective Answers

Chapter 10 कोशिका चक्र और कोशिका विभाजन

प्रश्न 1.

स्तनधारियों की कोशिकाओं की औसत कोशिका चक्र अवधि कितनी होती है?

उत्तर:

स्तनधारियों (मनुष्य) की कोशिकाओं की औसत कोशिका चक्र अवधि 24 घण्टे होती है।

प्रश्न 2.

कोशिकाद्रव्य (जीवद्रव्य) विभाजन व केन्द्रक विभाजन में क्या अन्तर है?

उत्तर:

कोशिकाद्रव्य विभाजन तथा केन्द्रक विभाजन में अन्तर (Difference between Cytokinesis and Karyokinesis):

कोशिकाद्रव्य विभाजन	केन्द्रक विभाजन
(Cytokinesis)	(Karyokinesis)
के पश्चात् कोशिकाद्रव्य का विभाजन होता है। प्राणी	

प्रश्न 3.

अन्तरावस्था में होने वाली घटनाओं का वर्णन कीजिए।

उत्तर:

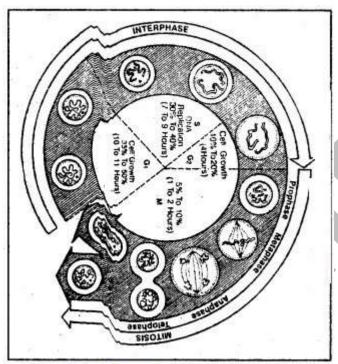
कोशिका चक्र (cell cycle) की दो प्रमुख अवस्थाएँ होती हैं -

- 1. अन्तरावस्था (interphase) तथा
- 2. सूत्री विभाजन अवस्था (M-phase)।

अन्तरावस्था (Interphase):

इस अवस्था में कोशिका विभाजन के लिए तैयार होती है। इस समय कोशिका वृद्धि तथा D.N.A. द्विगुणन की क्रिया होती है। अन्तरावस्था दो क्रमिक एम-प्रावस्थाओं (M-phase) के मध्य की प्रावस्था को व्यक्त करता है।

अन्तरावस्था को तीन प्रावस्थाओं में विभाजित किया जाता है –


पश्चसूत्री विभाजन अन्तरालकाल प्रावस्था (G₁ phase)

- 2. संश्लेषण प्रावस्था (S-phase)
- 3. पूर्वसूत्री. विभाजन अन्तरालकाल प्रावस्था (G2 phase)
- 1. पश्चसूत्री विभाजन अन्तरालकाल प्रावस्था (G₁ phase):

इस प्रावस्था में R.N.A. तथा प्रोटीन का संश्लेषण, D.N.A. संश्लेषण हेतु आवश्यक एन्जाइम्स का संश्लेषण एवं संग्रह होता है। इसमें कोशिका चक्र का लगभग 30-40% समय लगता है। G, प्रावस्था के बाद कोशिका के दो विकल्प होते हैं। कोशिका S-phase में प्रवेश करती है अथवा Go phase (शान्त प्रावस्था) में आ जाता है। Go phase में कोशिका अविभाजित रहती है; जैसे-हृदय पेशियाँ, तन्त्रिका कोशिका आदि।

2. संश्लेषण प्रावस्था (S-phase or Phase of D.N.A. Synthesis): इसमें D.N.A. का द्विगुणन होता है। प्रत्येक गुणसूत्र से दो अर्द्धगुणसूत्र (chromatids) बनते हैं। इसमें कोशिका चक्र का लगभग 30-50% समय लगता है।

चित्र-कोशिका चक्र की विभिन्न प्रावस्थाएँ

3. पूर्वसूत्री विभाजन अन्तरालकाल प्रावस्था (G2 phase):

S-phase के पश्चात् यह प्रावस्था आती है। इसमें कोशिका विभाजन की की तैयारी करती है। इसमें कोशिकाचक्र का कुल 10-20% समय लगता है। कोशिका चक्र का नियमन साइक्लिन निर्भर प्रोटीन काइनेस (cyclin dependent protein kinase) एन्जाइम्स द्वारा होता है।

4. एम-प्रावस्था (Mitotic phase or M − phase): यह G₂ phase के पश्चात् आती है। इसमें केन्द्रक तथा कोशिकाद्रव्य का विभाजन होता है। इसमें कोशिकाद्रव्य का कुल 5-10% समय लगता है।

प्रश्न 4.

कोशिका चक्र का Go (प्रशान्त प्रावस्था) क्या है।

उत्तर:

G₀ (प्रशान्त प्रावस्था-Quiescent phase) इसमें G₁ phase के पश्चात् कोशिका S-phase में प्रवेश नहीं करती। कोशिका G₁ phase से निष्क्रिय या प्रशान्त प्रावस्था में पहुँच जाती है। ऐसी कोशिका में कोशिका विभाजन नहीं होता, यद्यपि कोशिका उपापचयी रूप से सक्रिय होती है।

प्रश्न 5.

सूत्री विभाजन को समविभाजन क्यों कहते हैं?

उत्तर:

सूत्री विभाजन के फलस्वरूप बनी संतित कोशिकाओं में गुणसूत्रों की संख्या मातृ कोशिका के समान होती है। संतित कोशिकाएँ संरचना एवं लक्षणों में मातृकोशिका के समान होती हैं। इस कारण सूत्री विभाजन को समविभाजन कहते है।

प्रश्न 6.

कोशिका चक्र की उस अवस्था का नाम बताएँ, जिसमें निम्नलिखित घटनाएँ सम्पन्न होती हैं -

- 1. गुणसूत्र तङ मध्य रेखा की तरफ गति करते हैं।
- 2. गुणसूत्र बिन्दु का टूटना व अर्द्धगुणसूत्र का पृथक होना।
- 3. समजात गुणसूत्रों का आपस में युग्मन होना।
- 4. समजात गुणसूत्रों के बीच विनिमय का होना।

उत्तर:

- 1. मध्यावस्था।
- 2. पश्चावस्था।
- 3. अर्द्धसूत्री प्रथम पूर्वावस्था की जाइगोटीन उपअवस्था।
- 4. अर्द्धसूत्री प्रथम पूर्वावस्था की पैकीटीन उपअवस्था।

प्रश्न 7.

निम्न के बारे में वर्णन कीजिए -

- 1. सूत्रयुग्मन
- 2. युगली
- 3. काइऐज्मेटा।

उत्तर:

1. सूत्रयुग्मन (Synapsis):

अर्द्धसूत्री विभाजन की प्रथम पूर्वावस्था (Prophase-I) की युग्मपट्ट (zygotene) उपअवस्था में समजात गुणसूत्र (homologous chromosomes) जोड़े बनाते हैं। इसे सूत्रयुग्मन (synapsis) कहते हैं।

2. युगली (Bivalent):

अर्द्धसूत्री विभाजन की प्रथम पूर्वावस्था की युग्मपट्ट (zygotene) उपअवस्था में समजात गुणसूत्र जोड़े बनाते हैं। गुणसूत्रों के इन जोड़ों (pairs) को युगली गुणसूत्र (bivalent chromosomes) कहते हैं।

3. काइऐज्मेटा (Chiasmata):

अर्द्धसूत्री विभाजन की पूर्वावस्था प्रथम उपअवस्था द्विपट्ट (डिप्लोटीन-diplotene) में युग्मित गुणसूत्रों के अर्द्धगुणसूत्र कुछ स्थानों पर क्रॉस (Cross) बनाते हैं। इन स्थानों को काइऐज्मेटा (chiasmata) कहते हैं। इन स्थानों पर गुणसूत्रों के क्रोमैटिड्स टूटकर पुनः जुड़ते हैं। इस प्रक्रिया में समजात गुणसूत्रों के क्रोमैटिड्स परस्पर बदल जाते हैं। इसे पारगमन या विनिमय (crossing over) कहते हैं।

प्रश्न 8.

पादप व प्राणी कोशिकाओं के कोशिकाद्रव्य विभाजन में क्या अन्तर है?

उत्तर:

पादप और प्राणी कोशिकाओं के कोशिकाद्रव्य विभाजन में अन्तर (Difference between Cytokinesis of Plant and Animal Cells):

पादप कोशिकाओं में कोशिकाद्रव्य विभाजन क्रिया में पुत्री केन्द्रकों के मध्य में गॉल्जीकाय के उत्पाद, कुछ कण तथा सूक्ष्म नलिकाएँ एकत्र होकर एक-दूसरे से जुड़ जाते हैं, इन्हें प्रैग्मोप्लास्ट (phragmoplast) कहते हैं।

इससे मध्य पटिलका (middle lamellae) का निर्माण होता है। मध्य पटिलका पर सेलुलोस की भित्ति बन जाने से मातृ कोशिका विभाजित होकर दो संतित कोशिकाओं का निर्माण करती है। जन्तु कोशिकाओं में पुत्री केन्द्रकों के मध्य भाग में प्लाज्मा कला के अन्तर्वलन (invagination) द्वारा कोशिकाद्रव्य का 'बँटवारा हो जाता है और मातृ कोशिका दो संतित कोशिकाओं में बँट जाती है।

प्रश्न 9.

अर्द्धसूत्री विभाजन के बाद बनने वाली चार संतति कोशिकाएँ कहाँ आकार में समान और कहाँ भिन्न आकार की होती हैं?

उत्तर:

अर्द्धसूत्री विभाजन (Meiosis) द्वारा युग्मक निर्माण होता है। शुक्राणुजनन (spermatogenesis) में मातृ कोशिका के विभाजन से बनने वाली चारों पुत्री कोशिकाएँ समान होती हैं। ये शुक्रकायान्तरण द्वारा शुक्राणु का निर्माण करती हैं। शुक्रजनन में बनने वाली चारों सतित कोशिकाएँ आकार में समान होती हैं। अण्डजनन (oogenesis) में मातृ कोशिका से बनने वाली संतित कोशिकाएँ आकार में भिन्न होती हैं।

अण्डजनन के फलस्वरूप एक अण्डाणु तथा पोलर कोशिकाएँ बनती हैं। पोलर कोशिकाएँ आकार में छोटी होती हैं। पौधों के बीजाण्ड में गुरुबीजाणुजनन (अर्द्धसूत्री विभाजन) के फलस्वरूप गुरुबीजाणु, से चार कोशिकाएँ बनती हैं। इनमें आधारीय कोशिका अन्य कोशिकाओं से भिन्न होती हैं। यह वृद्धि और विभाजन द्वारा भ्रूणकोष (embryo sac) बनाता है। पौधों में लघु-बीजाणु जनन द्वारा लघु बीजाणु या परागकण बनते हैं। ये आकार में समान होते हैं।

प्रश्न 10.

सूत्री विभाजन की पश्चावस्ता, अर्द्धसूत्री विभाजन की पश्चावस्था । में क्या अन्तर है?

उत्तर:

सूत्री विभाजन तथा अर्द्धसूत्री विभाजन की पश्चावस्था। में अन्तर (Difference between the Anaphase Stage of Mitosis and Meiosis 1):

सूत्री विभाजन की	अर्द्धसूत्री विभाजन की
पश्चावस्था	पश्चावस्था I
(Anaphase Stage of	(Anaphase Stage of
Mitosis)	Meiosis)
(अर्द्धगुणसूत्र) प्रतिकर्षण के कारण विपरीत धुवों की ओर	पश्चावस्था प्रथम में सूत्रयुग्मन (synapsis) के कारण बने गुणसूत्रों के जोड़ों में प्रतिकर्षण होने के कारण समजात गुणसूत्र

सूत्री एवं अर्द्ध सूत्री विभाजन में प्रमुख अन्तरों को सूचीबद्ध कीजिए। उत्तर:

समसूत्री तथा अर्द्धसूत्री विभाजन में अन्तर:

	समसूत्री विभाजन	अर्द्धसूत्री विभाजन
1.	यह शरीर को सभी दैहिक कोशिकाओं में होता है।	यह केवल जनन कोशिकाओं में होता है।
2.	इसमें गुणसूत्रों की संख्या में कोई परिवर्तन नहीं होता।	इसमें सन्तित कोशिकाओं में गुणसूत्रों की संख्या जनकों से आधी रह जाती है।
3.	इसमें एक जनक कोशिका से दो सन्तित कोशिकायें बनती हैं।	यह एक जनक कोशिका से चार सन्तित कोशिकायें बनती हैं।
4.	यह पाँच प्रावस्थाओं में पूर्ण होती है।	यह दो उपविभाजनों में पूर्ण होती है। प्रत्येक उपविभाजन चार प्रावस्थाओं में विभाजित होता है।
5.	गुणसूत्र विनिमय नहीं पाया जाता है।	गुणसूत्र विनिमय पाया जाता है।

प्रश्न 12.

अर्द्धसूत्री विभाजन का क्या महत्त्व है?

उत्तर:

अर्द्धसूत्री विभाजन का महत्त्व

- 1. अर्द्धसूत्री विभाजन के कारण पीढ़ी पर पीढ़ी गुणसूत्रों की संख्या निश्चित बनी रहती है।
- 2. गुणसूत्रों में विनिमय के कारण गुणसूत्रों की संरचना एवं जीवधारी के लक्षणों में विभिन्नता आ जाती है।
- 3. युग्मक के अनियमित रूप से मिलने के कारण गुणसूत्रों के नये संयोग बनते हैं। इससे नये-नये लक्षणों का विकास होता है। ये भिन्नतायें जैव विकास का आधार मानी जाती हैं।

प्रश्न 13.

अपने शिक्षक के साथ निम्नलिखित के बारे में चर्चा कीजिए -

- 1. अगुणित कीटों व निम्न श्रेणी के पादपों में कोशिका विभाजन कहाँ सम्पन्न होता है?
- 2. उच्च श्रेणी पादपों की कुछ अगुणित कोशिकाओं में कोशिका विभाजन कहाँ नहीं होता है?

उत्तर:

- 1. नर मधुमक्खियाँ अर्थात् ड्रोन्स (drones) अगुणित होते हैं। इनमें सूत्री विभाजन अनिषेचित अगुणित अण्डों में होता है। निम्न श्रेणी के पादपों; जैसे-एककोशिकीय क्लैमाइडोमोनास (chlamydomonas), बहुकोशिकीय यूलोथिक्स (Ulothrix) आदि में समसूत्री विभाजन द्वारा जनन होता है। इनमें अगुणित युग्मक बनते हैं। युग्मकों के परस्पर मिलने से युग्माणु (zygote) बनते हैं। जाइगोट में अर्द्धसूत्री विभाजन होता है। इसके फलस्वरूप बने अगुणित बीजाणु समसूत्री विभाजन द्वारा नए पादपों का विकास करते हैं।
- 2. उच्च श्रेणी के पादपों में द्विगुणित बीजाण्डकाय में गुरुबीजाणु मातृ कोशिका में अर्द्धसूत्री विभाजन के कारण चार अगुणित गुरुबीजाणु बनते हैं। इनमें से तीन में कोशिका विभाजन नहीं होता। सक्रिय गुरुबीजाणु से भ्रूणकोष (embryo sac) बनता है। भ्रूणकोष की अगुणित प्रतिमुख कोशिकाओं (antipodal cells) तथा सहायक कोशिकाओं (synergids) में कोशिका विभाजन नहीं होता। साइकस के लघुबीजाणुओं (परागकण) के अंकुरण के फलस्वरूप नर युग्मकोद्भिद् बनता है। इसकी प्रोथैलियल chilfgrat (prothallial cell) an africht alleicht (tubecell) में कोशिका विभाजन नहीं होता।

प्रश्न 14.

क्या S प्रावस्था में बिना डी॰ एन॰ ए॰ प्रतिकृति के सूत्री विभाजन हो सकता है? उत्तर:

'S' प्रावस्था में D.N.A. की प्रतिकृति के बिना सूत्री विभाजन नहीं हो सकता।

प्रश्न 15.

क्या बिना कोशिका विभाजन के डी॰ एन॰ ए॰ प्रतिकृति हो सकती है? उत्तर:

कोशिका विभाजन के बिना भी D.N.A. प्रतिकृति हो सकती है। सामान्यतया D.N.A. से R.N.A. का निर्माण प्रतिकृति के फलस्वरूप ही होता रहता है।

प्रश्न 16.

कोशिका विभाजन की प्रत्येक अवस्थाओं के दौरान होने वाली घटनाओं का विश्लेषण कीजिए और ध्यान दीजिए कि निम्नलिखित दो प्राचलों में कैसे परिवर्तन होता है?

- 1. प्रत्येक कोशिका की गुणसूत्र संख्या (N)
- 2. प्रत्येक कोशिका में डी॰ एन॰ ए॰ की मात्रा (C)।

उत्तर:

अन्तरावस्था की G₁ प्रावस्था में कोशिका उपापचयी रूप से सक्रिय होती है। इसमें निरन्तर वृद्धि होती रहती है। S-प्रावस्था में D.N.A. की प्रतिकृति होती है। इसके फलस्वरूप D.N.A. की मात्रा दोगुनी हो जाती है। यदि D.N.A. की प्रारम्भिक मात्रा 2C से प्रदर्शित करें तो इसकी मात्रा 4C हो जाती है, जबिक गुणसूत्रों की संख्या में कोई परिवर्तन नहीं होता।

यदि G, प्रावस्था में गुणसूत्रों की संख्या 2N है तो G₂ प्रावस्था में भी इनकी संख्या 2N रहती है। अर्द्धसूत्री विभाजन की पूर्वावस्था प्रथम की युग्मपट्ट (जाइगोटीन) अवस्था में समजात गुणसूत्र जोड़े बनाते हैं। पश्चावस्था प्रथम में गुणसूत्रों का बँटवारा होता है। यदि गुणसूत्रों की संख्या 2N है तो अर्द्धसूत्री विभाजन के पश्चात् गुणसूत्रों की संख्या N रह जाती है। जननांगों (2N) में युग्मकजनन अर्द्धसूत्री विभाजन के फलस्वरूप होता है। इसके फलस्वरूप युग्मकों में गुणसूत्रों की संख्या घटकर अगुणित (आधी-N) रह जाती है।

