Bihar Board 12th Chemistry Subjective Answers

Chapter 8 d एवं f-ब्लॉक के तत्त्व

प्रश्न एवं उनके उत्तर

प्रश्न 8.1

सिल्वर परमाणु की मूल अवस्था में पूर्ण भरित d कक्षक (4d¹º) है। आप कैसे कह सकते हैं कि यह एक संक्रमण तत्व है।

उत्तर:

सिल्वर (Z = 47) + 2 ऑक्सीकरण अवस्था प्रदर्शित कर सकता है जिसमें उसके 4d कक्षक अपूर्ण भरे हुए है। अतः यह संक्रमण तत्व है।

प्रश्न 8.2

श्रेणी, Sc (Z = 21) से Zn (Z = 30) में जिंक की कणन एन्थैल्पी का मान सबसे कम होता है, अर्थात् 126 kJ mol⁻¹; क्यों?

उत्तर:

Zn के 3d – कक्षकों के इलेक्ट्रॉन धात्विक आबन्धन से प्रयुक्त नहीं होते हैं जबिक 3d – श्रेणी के शेष सभी धातुओं के d – कक्षक के इलेक्ट्रॉन धात्विक आबन्ध बनाने में प्रयुक्त होते हैं। अतः श्रेणी में Zn की कणन एन्थेल्पी का मान सबसे कम होता है।

प्रश्न 8.3

संक्रमण तत्वों की 3d श्रेणी का कौन-सा तत्व बड़ी संख्या में ऑक्सीकरण अवस्थाएँ दर्शाता है एवं क्यों? उत्तर:

Mn (Z = 25) के परमाणु में सर्वाधिक अयुग्मित इलेक्ट्रॉन पाये जाते हैं। अतः यह +2 से +7 तक ऑक्सीकरण अवस्थाएँ दर्शाता है, जो सबसे बड़ी संख्या है।

प्रश्न 8.4

कॉपर के लिए EΘ(M2+IM) का मान धनात्मक (+ 0.34 V) है। इसके सम्भावित कारण क्या हैं? उत्तर:

किसी धातु के लिए E Θ (M2+IM), निम्नलिखित पदों में होने वाले एन्थैल्पी परिवर्तन के योग से सम्बद्ध होता है – M(s) + $\Delta_a \to$ M(g) (Δ_a H = परमाण्विक एन्थैल्पी)

 $M(g) + \Delta_i H \rightarrow M^{2+}(g) (\Delta_i = आयनन एन्थैल्पी)$

 $M^{2+}(g) + (aq) \rightarrow M^{2+}(aq) + \Delta_{hyd} H (\Delta_i H = जलयोजन एन्थैल्पी)$

कॉपर की परमाण्विक एन्थैल्पी उच्च तथा जलयोजन एन्थैल्पी कम होती है। इसलिए E0(Cu2+|Cu) धनात्मक है। Cu (s) के Cu²+ (aq) में रूपान्तरण की उच्च ऊर्जा इसकी जलयोजन एन्थैल्पी द्वारा सन्तुलित नहीं होती है।

प्रश्न 8.5

संक्रमण तत्वों की प्रथम श्रेणी में आयनन एन्थैल्पी (प्रथम और द्वितीय) में अनियमित परिवर्तन को आप कैसे समझाएंगे?

उत्तर:

आयनन एन्थैल्पी में अनियमित परिवर्तन विभिन्न 3d विन्यासों के स्थायित्व की क्षमता में भिन्नता के कारण है (उदाहरण: do, d5, d10 असमान्य रूप से स्थाई हैं)।

प्रश्न 8.6

कोई धातु अपनी उच्चतम ऑक्सीकरण ऑक्साइड अथवा फ्लुओराइड में क्यों प्रदर्शित होता है? उत्तर:

छोटे आकार एवं उच्च विद्युत ऋणात्मकता के कारण ऑक्सीकरण अथवा फ्लुओरीन, धातु को उसके उच्च ऑक्सीकरण अवस्था तक आक्सीकृत कर सकते हैं।

प्रश्न 8.7

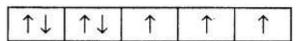
Cr²⁺ और Fe²⁺ में से कौन प्रबल अपचायक है और क्यों?

उत्तर:

Fe²⁺ की एक प्रबल अपचायक है।

कारण:

 Cr^{2+} से Cr^{3+} बनने में $d^4 \to d^3$ परिवर्तन होता है किन्तु Fe^{2+} से Fe^{2+} में $d^6 \to d^5$ में परिवर्तन होता है। जल जैसे माध्यम में d^5 की तुलना में d^3 अधिक स्थायी है।


प्रश्न 8.8

M²⁺ (aq) आयन (Z = 27) के लिए 'प्रचक्रण-मात्र' चुम्बकीय आघूर्ण की गणना कीजिए। गणना:

M परमाणु (Z = 27) का इलेक्ट्रॉनिक विन्यास [Ar] $3d^7 4s^2$ है।

 \therefore M^{2+} का इलेक्ट्रॉनिक विन्यास = [Ar] $3d^7$

या

इसमें तीन अयुगलित इलेक्ट्रॉन होते हैं।

: M²⁺ (aq) आयन के लिए 'प्रचक्रण-मात्र' चुम्बकीय आघूर्ण (µ)

=
$$n(n+2)$$
----- $\sqrt{B.M.}$

$$= 3(3+2) ---- \sqrt{B.M.}$$

= 3.87 B.M.

प्रश्न 8.9

स्पष्ट कीजिए कि Cu⁺ आयन जलीय विलयन में स्थायी नहीं है, क्यों? समझाइए।

उत्तर:

जलीय विलयन में Cu^+ (aq) निम्नलिखित प्रकार से असमानुपात करके Cu^{2^+} आयन बनाता है – $2Cu^+$ (aq) $\to Cu^{2^+}$ (aq) + Cu (s)

इस का कारण यह है कि कॉपर की द्वितीय आयनन एन्थैल्पी अधिक होती है, परन्तु Cu^{2+} (ag) के लिए Δ_{hyd} ,

Cu⁺ (aq) की तुलना में अधिक ऋणात्मक होती है। अतः यह कॉपर की द्वितीय आयनन एन्थैल्पी को संतुष्ट करती है। इस प्रकार Cu²⁺ (aq) आयन Cu²⁺ (aq) आयन में परिवर्तित हो जाता है जो अधिक स्थाई होता है।

प्रश्न 8.10

लैन्थेनाइड आंकुचन की तुलना में एक तत्व से दूसरे तत्व के बीच ऐक्टिनाइड आंकुचन अधिक होता है, क्यों? उत्तर:

5d इलेक्ट्रॉन नाभिकीय आवेश से प्रभावी रूप से परिरक्षित कहते हैं। दूसरे शब्दों में, 5d इलेक्ट्रॉनों का श्रेणी में एक तत्व से दूसरे तत्व की ओर जाने पर दुर्बल परिलक्षित होता है।

Bihar Board Class 12 Chemistry d एवं f-ब्लॉक के तत्त्व Additional Important Questions and Answers

अभ्यास के प्रश्न एवं उनके उत्तर

प्रश्न 8.1

निम्नलिखित के इलेक्ट्रॉनिक विन्यास लिखिए:

- 1. Cr³⁺
- 2. Pm³⁺
- 3. Cu⁺
- 4. Ce⁴⁺
- 5. Co²⁺
- 6. Mn²⁺
- 7. Th⁴⁺

उत्तर:

- 1. $Cr^{3+} = [Ar] 3d^3$
- 2. $Pm^{3+} = [Xe] 4f^4$
- 3. $Cu^+ = [Ar] 3d^{10}$
- 4. $Ce^{4+} = [Xe]$
- 5. $Co^{2+} = [Ar] 3d^7$
- 6. $Lu^{2+} = [Xe] 4f^{14} 5d^{1}$
- 7. $Mn^{2+} = [Ar] 3d^5$
- 8. $Th^{4+} = [Rn]$

प्रश्न 8.2

+ 3 ऑक्सीकरण अवस्था में ऑक्सीकृत होने के सन्दर्भ में Mn²⁺ के यौगिक Fe²⁺ के यौगिकों की तुलना में अधिक स्थायी क्यों हैं?

उत्तर:

Mn²+ तथा Fe²+ के इलेक्ट्रॉनिक विन्यास क्रमश: 3d⁵ और 3d⁶ हैं। अत: Mn की +2 की ऑक्सीकरण अवस्था हुण्ड के नियम से Fe की ऑक्सीकरण अवस्था +3 से अधिक स्थाई है।

प्रश्न 8.3

संक्षेप में स्पष्ट कीजिए कि प्रथम संक्रमण श्रेणी के प्रथम अर्द्धभाग में बढ़ते हुए परमाणु क्रमांक के साथ +2 ऑक्सीकरण अवस्था कैसे अधिक स्थायी होती जाती है?

उत्तर:

प्रथम संक्रमण श्रेणी के प्रथम अर्द्धभाग में बढ़ते हुए परमाणु क्रमांक के साथ IE₁ तथा IE₂ का योग बढ़ता है अतः मानक अपचायक विभव (E⁰) कम तथा ऋणात्मक होता है, जिससे M²⁺ आयन बनाने की प्रवृत्ति घटती है। Mn²⁺ में अर्द्धपूरित d – उपकोशों (d⁵) के कारण Zn²⁺ में पूर्णपूरित d – उपकोशों (d¹⁰) के कारण तथा निकिल में उच्च ऋणात्मक जलयोजन एन्थैल्पी के कारण +2 ऑक्सीकरण अवस्था का अधिक स्थायित्व होता है।

प्रश्न 8.4

प्रथम संक्रमण श्रेणी के तत्वों के इलेक्ट्रॉनिक विन्यास किस सीमा तक ऑक्सीकरण अवस्थाओं को निर्धारित करते हैं? उत्तर को उदाहरण देते हुए स्पष्ट कीजिए।

उत्तर:

प्रथम संक्रमण श्रेणी के तत्वों के इलेक्ट्रॉनिक विन्यास तथा उनकी ऑक्सीकरण अवस्थाओं को निम्न तालिका में दिखाया गया है:

तत्व	बाहरी कोश का इलेक्ट्रॉनिक विन्यास	ऑक्सीकरण अवस्थाएँ		
Sc	$3d^{1}4s^{2}$	+3		
Ti	$3d^24s^2$	+2, +3, +4		
v	$3d^34s^2$	+2, +3, +4, +5		
Cr	$3d^5 4s^1$	+2, +3, +4, +5, +6		
Mn	$3d^5 4s^2$	+2, +3, +4, +5, +6, +7		

तत्व की +2 ऑक्सीकरण अवस्था बहुत अधिक स्थाई होती है क्योंकि Mn²⁺ का इलेक्ट्रॉनिक विन्यास सभी पाँचों 34-कक्षक अर्द्ध भरे होने के कारण उच्च समितीय होता है।

प्रश्न 8.5

संक्रमण तत्वों की मूल अवस्था में नीचे दिए गए d – इलेक्ट्रॉनिक विन्यासों में कौन-सी ऑक्सीकरण अवस्था स्थायी होगी?

3d³, 3d⁵, 3d⁸ तथा 3d⁴

उत्तर:

स्थाई ऑक्सीकरण अवस्थाएँ –

3d³ (वैनेडियम) - +2, +3, + 4, +5

3d⁵ (क्रोमियम) - +3, +4, +6

3d⁵ (मैंगनीज) – + 2, +4, +6, +7 3d⁴ (कोबाल्ट) – +2, +3 (संकुलों में) 3d⁴ मूल अवस्था में 3d⁴ विन्यास नहीं होता है।

प्रश्न 8.6

प्रथम संकमण श्रेणी के आक्सोधातु ऋणायनों का नाम लिखिए, जिसमें धातु संक्रमण श्रेणी की वर्ग संख्या के बराबर आक्सीकरण अवस्था प्रदर्शित करती है।

उत्तर:

प्रथम संक्रमण श्रेणी के आक्सो-ऋणायन निम्न है – वैनेडेट VO-3 जिसमें V की आक्सीकरण अवस्था 5 है जो वर्ग संरचना के बराबर है। क्रोमेट CrO-4, जिसमें Cr की आक्सीकरण अवस्था 6 है जो वर्ग संख्या के बराबर है। परमैंगनेट MNO-4 जिसमें Mn की आक्सीकरण अवस्था 7 है जो वर्ग संख्या के बराबर है।

प्रश्न 8.7

लैन्थेनायड आंकुचन क्या है? लैन्थेनायड आकुंचन के परिणाम क्या हैं?

उत्तर:

लैन्थेनाइड श्रेणी के तत्त्वों में आयनिक तथा परमाणवीय त्रिज्या में बाईं से दाईं ओर होने वाली कमी लैंथेनाइड आकुंचन कहलाती है। लैंथेनाइड में इलेक्ट्रॉन 4f उपकोश में इलेक्ट्रॉन प्रवेश करते हैं।

इन f – इलेक्ट्रॉनों का परिरक्षण प्रभाव बहुत कम होता है जबिक परमाणु क्रमांक की वृद्धि के साथ नाभिकीय आवेश में वृद्धि होती है। इस कम प्रभाव के कारण यह f – इलेक्ट्रॉन नाभिकीय आवेश के प्रभाव को इतना कम नहीं कर पाते जिससे संयोजी इलेक्ट्रॉन नाभिक के द्वारा अधिक बल के साथ आकर्षित होते हैं।

1. भौतिक गुणों में भिन्नता:

गलनांक, क्वथनांक, कठोरता आदि परमाणु संख्या की वृद्धि के साथ बढ़ते हैं, ऐसा परमाणओं के मध्य आकर्षण बल में विद्धि के कारण होता है क्योंकि आकार घटता है।

2. मानक अपचयन विभव में भिन्नता:

अपचयन अभिक्रिया के लिए मानक अपचयन में वृद्धि लैंथेनाइड संकुचन के कारण होती है।

3. लैंथेनाइड में समानता:

आकार में थोड़े परिवर्तन के कारण सब लैंथेनाइड रासायनिक गुणों के कारण इनमें परस्पर समानता होती है।

4. क्षारीय सामर्थ्य में भिन्नता:

हाइड्रॉक्साइडों की आयनिक त्रिज्याओं और सहसंयोजकता के घटने की क्षारीय सामर्थ्य Ce(OH)3 से Lu(OH)3 तक बढ़ती है। इसके फलस्वरूप परमाण्विक तथा आयनिक त्रिज्या बायें से दायें जाने पर घटती है जो कि लैंथेनाइड आकुंचन रूप में होती है।

प्रश्न 8.8

संक्रमण धातुओं के अभिलक्षण क्या हैं? ये संक्रमण धातु क्यों कहलाती है? d – ब्लॉक के तत्वों में कौन-से तत्व

संक्रमण श्रेणी के तत्व नहीं कहे जा सकते?

उत्तरः

संक्रमण धातुओं के अभिलक्षण:

- 1. इनमें धात्विक गुण होता है। ये सभी तत्व ऊष्मा तथा विद्युत के सुचालक होते हैं।
- 2. इनके आयन तथा यौगिक रंगीन होते हैं।
- 3. ये तत्व और इनके यौगिक उत्प्रेरक गुण प्रदर्शित करते
- ये संकर आयन बनाने की प्रकृति रखते हैं। जैसे − [Fe(CN)₆]³⁻, [Cu(NH₃)]²⁺ आदि।
- 5. ये तत्व अधिकतर अनुचुम्बकीय होते हैं।
- 6. ये अन्य धातुओं के साथ मिश्रधातु बनाते हैं।
- 7. ये कुछ तत्वों के साथ अन्तराक्षी यौगिक बनाते हैं।
- 8. ये अनेक आक्सीकरण अवस्थाएँ प्रदर्शित करते हैं।
- 9. इनमें संकुल बनाने की प्रवृत्ति अधिक है।

d - ब्लॉक तत्व संक्रमण तत्व हैं:

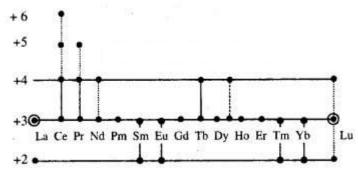
चूँकि ये तत्व अधिक विद्युतधनात्मक s – ब्लॉक तत्वों और कम विद्युत-धनात्मक p – ब्लॉक तत्वों के मध्य में हैं, अतः इन्हें संक्रमण तत्व कहते हैं। Zn, Cd तथा Hg का इलेक्ट्रॉनिक विन्यास (n – 1) d¹⁰ ns² है। चूंकि ये आक्सीकरण अवस्था में पूर्ण पूरित हैं, अतः ये तत्व संक्रमण तत्व नहीं कहे जा सकते।

प्रश्न 8.9

संक्रमण धातुओं के इलेक्ट्रॉनिक विन्यास किस प्रकार असंक्रमण तत्वों के इलेक्ट्रॉनिक विन्यास से भिन्न हैं? उत्तर:

संक्रमण धातुओं से अपूर्ण d – उपकोश होते हैं, इनका इलेक्ट्रॉनिक विन्यास (n – 1) d¹⁻¹⁰ ns¹⁻² होता है, जबिक असंक्रमण तत्वों में d – उपकोश नहीं होते हैं तथा इनके बाहरी कोश का विन्यास ns¹⁻² या ns², np¹⁻⁶ होता है।

प्रश्न 8.10


लैन्थेनाइडों द्वारा कौन-कौन सी आक्सीकरण अवस्थाएँ प्रदर्शित की जाती हैं।

लैन्थेनाइडों की आक्सीकरण अवस्थाएँ (Oxidation States of Lanthanides):

आवर्त सारणी के वर्ग 3 के सदस्यों से प्रत्याशित होता है कि लैन्थेनाइडों की एकसमान +3 आक्सीकरण अवस्था उनकी एक विशेषता है। त्रिधनात्मक आक्सीकरण अवस्था 6s² इलेक्ट्रॉन और एकाकी 5d – इलेक्ट्रॉन अथवा यदि कोई 5d – इलेक्ट्रॉन उपस्थित न हो तो ƒ – इलेक्ट्रॉनों में से एक के उपयोग के अनुसार होती है। प्रथम तीन आयनन एन्थेल्पियों का योग अपेक्षाकृत निम्न होता है जिससे ये तत्व उच्च धनविद्युती होते हैं और तत्परता से +3 आयन बना लेते हैं।

यद्यपि जलीय विलयन में तथा ठोस अवस्था में सीरियम (Ce⁴⁺) तथा सैमेरियम, यूरोपियम और इटर्बियम (Sm²⁺, Eu²⁺ Yb²⁺) आयन दे सकते हैं। अन्य तत्व ठोस अवस्था में +4 अवस्था दे सकते हैं। MX₃ का अपचयन न केवल MX₂ अपितु विशेष स्थिति में जटिल अपचयित भी दे सकता है।

लैन्थेनाइडों के लिए +3 आक्सीकरण अवस्था की धारणा पर्याप्त दृढ़ हो गई है तथा अन्य ऑक्सीकरण अवस्थाओं को प्रायः 'असंगत' कहा जाता है। विभिन्न लैन्थेनाइडों की ऐसी असंगत ऑक्सीकरण अवस्था निम्नांकित प्रकार प्रदर्शित की गई हैं –

चित्र – लैन्थेनम तथा लैन्थेनाइडों द्वारा प्रदर्शित विभिन्न ऑक्सीकरण अवस्थाएँ। बिन्दुवत रेखाएँ संदिग्ध या अल्पस्थायी संयोजकताएँ प्रदर्शित करती है –

यदि हम यह मान लें कि रिक्त, अर्द्धपूर्ण या पूर्ण f – उपकोश के साथ विशेष स्थायित्व सम्बन्धित होता है जो एक निश्चित सीमा तक +2 तथा +4 ऑक्सीकरण अवस्थाओं की उपस्थिति का इलेक्ट्रॉनिक संरचनाओं के साथ सामंजस्य किया जा सकता है। इस प्रकार La, Gd और Lu केवल त्रिधनात्मक आयन निर्मित करते हैं; क्योंकि तीन इलेक्ट्रॉनों के निष्कासन में La³⁺ आयन में उत्कृष्ट गैस का विन्यास बन जाता है।

Gd³⁺ तथा Lu³⁺ आयनों में क्रमश: स्थाई 4f⁷ तथा 4f¹⁴ इलेक्ट्रॉनों का निष्कासन नहीं होता; क्योंकि M³⁺ आयनों की अपेक्षा M²⁺ अथवा M⁺ आयनों की जालक अथवा जलयोजन ऊर्जाएँ लघु M³⁺ आयनों के लवणों की योगात्मक जालक या जलयोजन ऊर्जाओं की अपेक्षा कम होगी।

सबसे अधिक स्थायी द्वि या चतुर्धनात्मक आयन उन तत्वों द्वारा निर्मित होते हैं जो ऐसा करके f^9 , f^7 तथा f^{14} विन्यास प्राप्त कर सकते हो। इस प्रकार सीरियम तथा इटर्बियम +4 ऑक्सीकरण अवस्था में आकर क्रमशः f^0 तथा f^{14} विन्यास प्राप्त करते हैं। यूरोपियम तथा इटर्बियम +2 ऑक्सीकरण अवस्था में क्रमश: f^7 तथा f^7 विन्यास प्राप्त कर लेते हैं।

ये तथ्य इस धारणा का समर्थन करते प्रतीत होते हैं कि लैन्थेनाइडों के लिए +3 के अतिरिक्त दूसरी ऑक्सीकरण अवस्थाओं का अस्तित्व निर्धारित करने में f^0 , f^7 तथा तथा f^{14} विन्यासों का विशेष स्थायित्व महत्त्वपूर्ण है, परन्तु यह तर्क कम निर्णयात्मक हो जाता है जब हम देखते हैं कि सैमेरियम और धूलियम और f^{13} विन्यास रखते हुए M^{2+} आयन बनाते हैं, M^+ आयन नहीं। साथ प्रेजियोडिमियम एवं नियोडिमियम f^1 तथा f^2 विन्यासों के साथ M^{4+} आयनन बनाते हैं, परन्तु कोई पंच या षट-संयोजक प्रकार के आयन नहीं बनाते।

इसमें सन्देह नहीं है कि Sm (II) और विशेषकर Tm (II), Pr (IV) तथा Nd (IV) अवस्थाएँ बहुत अस्थायी हैं, परन्तु यह विचार भी संदिग्ध है कि f^0 , f^7 या 14 विन्यास के केवल समीप पहुँच जाना भी स्थायित्व के लिए सहायक होता है चाहे ऐसा कोई विन्यास वस्तुतः प्राप्त नहीं भी हो।

Nd²⁺ (f⁴) का अस्तित्व यह विश्वास करने के लिए विशेष निर्णयात्मक प्रमाण है कि यद्यपि f⁰, f⁷, f¹⁴ विन्यास का स्थायित्व ऑक्सीकरण अवस्थाओं का स्थायित्व निर्धारण करने में एक घटक हो सकता है, यद्यपि अन्य ऊष्मागतिकीय तथा गतिकीय घटक विशेष भी हैं जिनका समान या अधिक महत्त्व है।

प्रश्न 8.11

कारण देते हुए स्पष्ट कीजिए -

- 1. संक्रमण धातुएँ तथा उनके अधिकांश यौगिक अनुचुम्बकीय हैं।
- 2. संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं।
- 3. संक्रमण धातुएँ सामान्यतः रंगीन यौगिक बनाती हैं।
- 4. संक्रमण धातुएँ तथा इनके अनेक यौगिक उत्तम उत्प्रेरक का कार्य करते हैं।

उत्तर:

1. पदार्थों में अनुचुम्बकत्व की उत्पत्ति, अयुगलित इलेक्ट्रॉनों की उपस्थिति के कारण होती है। प्रतिचुम्बकीय पदार्थ वे होते हैं जिनमें सभी इलेक्ट्रॉन युगलित होते हैं। संक्रमण धातु आयनों में प्रतिचुम्बकत्व तथा अनुचुम्बकत्व दोनों होते हैं अर्थात् इनमें दो विपरीत प्रभाव पाए जाते हैं, इसलिए परिकलित चुम्बकीय आघूर्ण इनका परिणामी चुम्बकीय आघूर्ण माना जाता है।

d^o (Sc³⁺, Ti⁴⁺) या d¹⁰ (Cu⁺, Zn²⁺) विन्यासों को छोड़कर, संक्रमण धातुओं के सभी सरल आयनों में इनके (n – 1) d उपकोशों में अयुगलित इलेक्ट्रॉन होते हैं; अत: ये अधिकांशत: अनुचुम्बकीय होते हैं। ऐसे अयुगलित इलेक्ट्रॉन का चुम्बकीय आधूर्ण, प्रचक्रण कोणीय संवेग तथा कक्षीय कोणीय संवेग से सम्बन्धित होता है।

प्रथम संक्रमण श्रेणी की धातुओं के यौगिकों में कक्षीय कोणीय संवेग का योगदान प्रभावी रूप से शमित (quench) हो जाता है, इसलिए इसका कोई महत्त्व नहीं रह जाता। अतः इनके लिए चुम्बकीय आघूर्ण का निर्धारण उसमें उपस्थित अयुगलित इलेक्ट्रॉनों की संख्या के आधार पर किया जाता है तथा इसकी गणना निम्नलिखित 'प्रचक्रण मात्र' सूत्र द्वारा दी जाती है –

$$\mu = n(n+2) - - - \sqrt{1}$$

यहाँ n अयुगलित इलेक्ट्रॉनों की संख्या है तथा µ चुम्बकीय आघूर्ण है जिसका मात्रक बोर मैग्नेटॉन (BM) है। एक अयुगलित इलेक्ट्रॉन का चुम्बकीय आघूर्ण 1.73 BM होता है।

- 2. संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं; क्योंकि इनके परमाणुओं में अयुगलित इलेक्ट्रॉनों की संख्या अधिक होती है। इस कारण इनमें प्रबल अन्तरापरमाण्विक अन्योन्य-क्रियाएँ होती हैं तथा इसीलिए परमाणुओं के मध्य प्रबल आबन्ध उपस्थित होते हैं।
- 3. अधिकांश संक्रमण धातु आयन विलयन तथा ठोस अवस्थाओं में रंगीन होते हैं। ऐसा दृश्य प्रकाश के आंशिक अवशोषण के कारण होता है। अवशोषित प्रकाश इलेक्ट्रॉन को समान d उपकोश के एक कक्षक से दूसरे कक्षक पर पहुँचा देता है। चूँकि इलेक्ट्रॉनिक संक्रमण धातु आयनों के d कक्षकों में होते हैं; इसलिए did संक्रमण कहलाते हैं। संक्रमण धातु आयनों में दृश्य प्रकाश को अवशोषित करके होने वाले d-d संक्रमणों के कारण ही ये रंगीन दिखाई देते हैं।
- 4. संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकीय सिक्रयता के लिए जाने जाते हैं। संक्रमण धातुओं का यह गुण इनकी परिवर्तनशील संयोजकता एवं संकुल यौगिक के बनाने के गुण के कारण है। वेनेडियम (V) ऑक्साइइड (संस्पर्श प्रक्रम में), सूक्ष्म विभाजित आयरन (हेबर प्रक्रम में) और निकिल (उत्प्रेरकीय हाइड्रोजन में) संक्रमण

धातुओं के द्वारा उत्प्रेरण के कुछ उदाहरण हैं। उत्प्रेरक के ठोस पृष्ठ पर अभिकारक के अणुओं तथा उत्प्रेरक की सतह के परमाणुओं के बीच आबन्धों की रचना होती है।

आबन्ध बनाने के लिए प्रथम संक्रमण श्रेणी की धातुएँ 3d एवं 4s इलेक्ट्रॉनों का उपयोग करती हैं। परिणामस्वरूप उत्प्रेरक की सतह पर अभिकारक की सान्द्रता में वृद्धि हो जाती है तथा अभिकारक के अणुओं में उपस्थित आबन्ध दुर्बल हो जाते हैं। सिक्रयण ऊर्जा का मान घट जाता है। ऑक्सीकरण अवस्थाओं में परिवर्तन हो सकने के कारण संक्रमण धातुएँ उत्प्रेरक के रूप में अधिक प्रभावी होती हैं।

उदाहरणार्थ:

आयरन (III), आयोडाइड आयन तथा परसल्फेट आयन के बीच सम्पन्न होने वाली अभिक्रिया का उत्प्रेरित करता है। $2I^- + S_2O_8^{2-} \rightarrow I_2 \uparrow + 2SO_4^{2-}$

इस उत्प्रेरकीय अभिक्रिया का स्पष्टीकरण इस प्रकार है -

$$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2 \uparrow$$

$$2Fe^{2+} + S_2O_8^{2-} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$$

प्रश्न 8.12

अन्तराकाशी यौगिक क्या हैं? इस प्रकार के यौगिक संक्रमण धातुओं के लिए भली प्रकार से ज्ञात क्यों हैं? उत्तर

ऐसे यौगिकों को जिनके क्रिस्टल जालक में अन्तराकाशी स्थलों को छोटे आकार वाले परमाणु अध्यासित कर लेते हैं, अन्तराकाशी यौगिक कहते हैं। अन्तराकाशी यौगिक संक्रमण धातुओं के लिए ज्ञात होते हैं; क्योंकि संक्रमण धातुओं के क्रिस्टल जालकों में उपस्थित रिक्तियों में छोटे आकार वाले परमाणु; जैसे – H, N या C सरलता से सम्पाशित हो जाते है।

प्रश्न 8.13

संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता असंक्रमण धातुओं में ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता से किस प्रकार भिन्न है? उदाहरण देकर स्पष्ट कीजिए।

उत्तर:

परिवर्तनशील ऑक्सीकरण अवस्थाएँ संक्रमण धातुओं की एक प्रमुख विशेषता है। इसका कारण है, अपूर्ण d – कक्षकों में इलेक्ट्रॉनों का इस प्रकार से प्रवेश करना जिससे इन तत्वों की ऑक्सीकरण अवस्थाओं में एक का अन्तर बना रहता है। इसका उदाहरण, V^{II}, V^{III}, V^{IV}, V^V है। दूसरी ओर असंक्रमण तत्वों में विभिन्न ऑक्सीकरण अवस्थाओं में सामान्यतया दो का अन्तर पाया जाता है।

प्रश्न 8.14

आयरन क्रोमाइट अयस्क से पोटैशियम डाइक्रोमेट बनाने की विधि का वर्णन कीजिए। पोटैशियम डाइक्रोमेट विलयन पर pH बढ़ाने से क्या प्रभाव पड़ेगा?

उत्तर:

पोटैशियम डाइक्रोमेट बनाने की विधि:

क्रोमाइट अयस्क (FeCr₂O₄) को जब वायु की उपस्थिति में सोडियम या पोटैशियम कार्बोनेट के साथ संगलित

किया जाता है तो क्रोमेट प्राप्त होता है। $4FeCr_2O_4 + 8Na_2CO_3 + 7O_2 \rightarrow 8Na_2CrO_4 + 2Fe_2O_3 + 8CO_2 \uparrow$

सोडियम क्रोमेट के पीले विलयन को छानकर उसे सल्फ्यूरिक अम्ल द्वारा अम्लीय बना लिया जाता है जिसमें से नारंगी सोडियम डाइक्रोमेट, Na₂CrO₄ + 2H⁺ → Na₂Cr₂O₇ + 2Na⁺ + H₂O

सोडियम डाइक्रोमेट की विलेयता, पोटैशियम डाइक्रोमेट से अधिक होती है। इसलिए सोडियम डाइक्रोमेट के विलयन में पोटैशियम क्लोराइड डालकर पोटैशियम डाइक्रोमेट प्राप्त कर लिया जाता है।

$$Na_2Cr_2O_7 + 2KCI \rightarrow K_2Cr_2O_7 + 2NaCl$$

पोटैशियम डाइक्रोमेट के नारंगी रंग के क्रिस्टल, क्रिस्टलीकृत हो जाते हैं। जलीय विलयन में क्रोमेट तथा डाइक्रोमेट का अन्तरारूपान्तरण होता है जो विलयन के pH पर निर्भर करता है। क्रोमेट तथा डाइक्रोमेट में क्रोमियम की ऑक्सीकरण संख्या समान है।

$$2CrO2-4 + 2H^+ \rightarrow Cr2O2-7 + H_2O$$

$$Cr2O2-7 + 2OH^- \rightarrow 2CrO2-4 + H_2O$$

अब PH बढ़ाने पर डाइक्रोमेट आयन (नारंगी रंग) क्रोमेट आयनों में परिवर्तित हो जाते हैं तथा विलयन का रंग पीला हो जाता है।

प्रश्न 8.15

पोटैशियम डाइक्रोमेट की ऑक्सीकरण क्रिया का उल्लेख कीजिए तथा निम्नलिखित के साथ आयनिक समीकरण लिखिए:

- 1. आयोडाइड आयन
- 2. [आयरन (II) विलयन]
- 3. H₂S

उत्तर:

पोटैशियम डाइक्रोमेट प्रबल ऑक्सीकारक के रूप में कार्य करता है। इसका उपयोग आयतनिमतीय विश्लेषण में प्राथमिक मानक के रूप में किया जाता है। ऊष्मीय माध्यम में डाइक्रोमेट आयन की ऑक्सीकरण क्रिया निम्नलिखित प्रकार से प्रदर्शित की जा सकती हैं –

$$Cr2O2-7 + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O$$

(E⁰ = 1.33V)

आयनिक अभिक्रियाएँ (Ionic Reactions):

1. आयोडाइड आयन के साथ:

आयोडीन मुक्त होती है -

$$Cr2O2-7 + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O + 3I^{2}\uparrow$$

2. आयरन (II) विलयन के साथ:

आयरन (II) लवण में ऑक्सीकृत करेगा।

$$Cr2O2-7 + 14H^{+} + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_{2}O + 6Fe^{3+}$$

3. H₂S के साथ:

S में ऑक्सीकृत करता है।

$$Cr2O2-7 + 8H^+ + 3H_2S \rightarrow 2Cr^{3+} + 7H_2O + 3S \downarrow$$

प्रश्न 8.16

पोटैशियम परमैंगनेट को बनाने की विधि का वर्णन कीजिए। अम्लीय पोटैशियम परमैंगनेट किस प्रकार -

- 1. [आयरन (II) आयन]
- 2. SO₂ तथा
- 3. ऑक्सैलिक अम्ल से अभिक्रिया करता है? अभिक्रियाओं के लिए आयनिक समीकरण लिखिए।

उत्तर:

पोटैशियम परमैंगनेट, KMnO4 (Potassium Permanganate, KMnO4):

बनाने की विधि (Methods of Preparation):

पोटैशियम परमैंगनेट को निम्नलिखित विधि से बनाया जा सकता है:

1. पोटैशियम परमैंगनेट को प्राप्त करने के लिए MnO₂ को क्षारीय धातु हाइड्रॉक्साइड तथा KNO₃ जैसे ऑक्सीकारक के साथ संगलित किया जाता है। इससे गाढ़े हरे रंग का उत्पाद K₂MnO₄ प्राप्त होता है जो उदासीन या अम्लीय माध्यम में असमानुपातिक होकर पोटैशियम परमैंगनेट देता है।

$$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$$

 $3MnO_2-4 + 4H^+ \rightarrow 2MnO_4 + MnO_2 + 2H_2O$

2. औद्योगिक स्तर पर इसका उत्पादन MnO₂ के क्षारीय ऑक्सीकरणी संगलन के पश्चात्, मैंगनेट (VI) के विद्युत-अपघटनी ऑक्सीकरण द्वारा किया जाता है।

KOH के साथ संगलन, वायु
या KNO3 के साथ ऑक्सीकरण

$$MnO_2 \longrightarrow MnO_4^{2-}$$
मैगनीज मैगनेट आयन
हाइ ऑक्साइडह क्षारीय विलयन में विद्युत-अपघटनी ऑक्सीकरण

 $MnO_4^{2-} \longrightarrow MnO_4^{-}$
मैगनेट आयन
(iii) प्रयोगशाला में मैंगनीज (II) आयन के लवण परऑक्सीडाइसल्फेट द्वारा ऑक्सीकृत होकर परमैंगनेट बनाते हैं। $2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O \longrightarrow 2MnO_4^{2-} + 10 SO_4^{2-} + 16H^+$

3. प्रयोगशाला में मैंगनीज (II) आयन के लवण परऑक्सीडाइसल्फेट द्वारा ऑक्सीकृत होकर परमैंगनेट बनाते हैं। 2Mn²⁺ + 5S₂O²⁻₈ + 8H₂O → 2MnO²⁻₄ + 10SO²⁻₄ + 16H⁺

रासायनिक अभिक्रियाएँ – अम्लीय पोटैशियम परमैंगनेट की रासायनिक अभिक्रियाएँ निम्नलिखित हैं –

1. [आयरन (II) आयन के साथ]:

 Fe^{2+} आयन (हरा) का Fe^{3+} (पीले) में परिवर्तन होता है।

$$MnO^{2-}_{4} + 8H^{+} + 5e^{2+} \rightarrow Mn^{2+} + 4H_{2}O + 5Fe^{3+}$$

2. SO₂ के साथ:

SO²⁻4 तथा Mn²⁺ आयन बनते हैं।

$$2MnO^{2-}_{4} + 2H_{2}O + 5SO_{2} \rightarrow 2Mn^{2+} + 4H^{+} + 5SO^{2-}_{4}$$

3. ऑक्सैलिक अम्ल के साथ:

CO2 तथा H2O में ऑक्सीकृत करता है।

$$2MnO_4^{2-} + 16H^+ + 5 \mid \longrightarrow 2Mn^{2+}$$

$$COO$$

$$+ 8H_2O + 10CO_2 \uparrow$$

प्रश्न 8.17

M²⁺/M तथा M³⁺/M²⁺ निकाय के सन्दर्भ में कुछ धातुओं के E⁰ के मान नीचे दिए गए हैं।

- 1. अम्लीय माध्यम में Cr³+ या Mn³+ की तुलना में Fe³+ का स्थायित्व।
- 2. समान प्रक्रिया के लिए क्रोमियम अथवा मैंगनीज धातुओं की तुलना में आयरन के ऑक्सीकरण में सुगमता।

उत्तर:

1. चूँकि Cr^{3+}/cr^{2+} का अपचयन विभव ऋणात्मक (-0.4V) है। अत: Cr^{3+} , Cr^{2+} में अपचयित नहीं हो सकता अर्थात् Cr^{3+} अधिक स्थायी है। Mn^{3+}/Mn^{2+} का E^{θ} मान ऑक्सीकरण (+ 1.5 V) है। अत: Mn^{3+} सरलता से Mn^{3+} में अपचयित हो सकता है और Mn^{3+} कम स्थायी है। अतः विभिन्न आयनों की सापेक्षिक स्थिरता का क्रम निम्न है –

$$Mn^{3+} < Fe^{3+} < Cr^{3+}$$

2. क्रोमियम, मैंगनीज तथा आयरन के ऑक्सीकरण विभव +0.9 V, +1.2V तथा + 0:4 V होंगे। अतः इनके ऑक्सीकरण का क्रम निम्नवत् है:

Mn > Cr > Fe

प्रश्न 8.18

निम्नलिखित में कौन-से आयन जलीय विलयन में रंगीन होंगे?

Ti³⁺, V³⁺, Cu⁺, Sc³⁺, Mn²⁺, Fe³⁺ तथा Co²⁺ प्रत्येक के लिए कारण बताइए।

उत्तर:

Sc³⁺ को छोड़कर, अभारित d – कक्षकों की उपस्थिति के कारण अन्य सभी जलीय विलयन में रंगहीन होंगे तथा d – d संक्रमण देगा।

प्रश्न 8.19

प्रथम संक्रमण श्रेणी की धातुओं की +2 ऑक्सीकरण अवस्थाओं के स्थायित्व की तुलना कीजिए। उत्तर:

प्रथम संक्रमण श्रेणी के प्रथम अर्द्धभाग में बढ़ते हुए परमाणु क्रमांक के साथ प्रथम तथा द्वितीय आयनन एन्थैल्पियों का योग बढ़ता है। अत: मानक अपचायक विभव (E⁰) कम तथा ऋणात्मक होता है, इसलिए M²⁺ आयन बपनाने की प्रवृत्ति घटती है। +2 ऑक्सीकरण अवस्था का अधिक स्थायित्व, Mn²⁺ में अर्द्धपूरित d – उपकोशों (d⁵) के कारण, Zn²⁺ में पूर्णपूरित d – उपकोशों (d¹⁰) के कारण तथा निकिल में उच्च ऋणात्मक जलयोजन एन्थैलल्पी के कारण होता है।

प्रश्न 8.20

निम्नलिखित के सन्दर्भ में लैन्थेनाइड एवं ऐक्टिनाइड के रसायन की तुलना कीजिए -

- 1. इलेक्ट्रॉनिक विन्यास
- 2. परमाण्वीय एवं आयनिक आकार
- 3. ऑक्सीकरण अवस्था
- 4. रासायनिक अभिक्रियाशीलता।

उत्तर:

1. इलेक्ट्रॉनिक विन्यास (Electronic configuration):

लैन्थेनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Xe]⁵⁴ 4f¹⁻¹⁴ 5d⁰⁻¹ 6s² होता है, जबिक ऐक्टिनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Rn]⁸⁶ 5f¹⁻¹⁴ 6d⁰⁻¹ 7s² होता है। अतः लैन्थेनाइड 4f श्रेणी से तथा ऐक्टिनाइड 5f श्रेणी से सम्बद्ध होते हैं।

2. परमाण्वीय एवं आयनिक आकार (Atomic and ionic sizes):

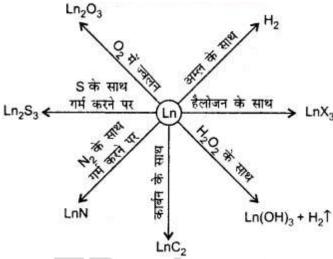
लैन्थेनाइड तथा ऐक्टिनाइड दोनों +3 ऑक्सीकरण अवस्था में अपने परमाणुओं अथवा आयनों के आकारों में कमी प्रदर्शित करते हैं। लैन्थेनाइडों में यह कमी लैन्थेनाइड आकुंचन कहलाती है, जबिक ऐक्टिनाइडों में यह ऐक्टिनाइड आकुंचन कहलाती है। यद्यपि ऐक्टिनाइडों में एक तत्व से दूसरे तत्व तक 5f – इलेक्ट्रॉनों द्वारा अत्यन्त कम परिरक्षण प्रभाव के कारण आकुंचन उत्तरोत्तर बढ़ता है।

3. ऑक्सीकरण अवस्था (Oxidation states):

लैन्थेनाइड सीमित ऑक्सीकरण अवस्थाएँ (+ 2, +3, + 4) प्रदर्शित करते हैं, जिनमें +3 ऑक्सीकरण अवस्था सबसे अधिक सामान्य है। इसका कारण 4f, 5d तथा 6s उपकोशों के बीच अधिक ऊर्जा-अन्तर होना है। दूसरी

ओर ऐक्टिनाइड अधिक संख्या में ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं; क्योंकि 5f, 6d तथा 7s उपकोशों में ऊर्जा-अन्तर कम होता है।

4. रासायनिक अभिक्रियाशीलता (Chemical reactivity):


लैन्थेनाइड (Lanthanides):

सामान्य रूप से श्रेणी के आरम्भ वाले सदस्य अपने रासायनिक व्यवहार में कैल्सियम की तरह बहुत क्रियाशील होते हैं, परन्तु बढ़ते परमाणु क्रमांक के साथ ये ऐलुमिनियम की तरह व्यवहार करते हैं।

अर्द्ध-अभिक्रिया Ln³⁺ (aq) + 3e⁻ → Ln (s) के लिए E⁰ का मान -2.2 से -2.4 V के परास में है। E⁰ के लिए E⁰ का मान -2.0 V है।

निस्सन्देह मान में थोड़ा-सा परिवर्तन है, हाइड्रोजन गैस के वातावरण में मन्द गित से गर्म करने पर धातुएँ हाइड्रोजन से संयोग कर लेती हैं। धातुओं को कार्बन के साथ गर्म करने पर कार्बाइड – Ln3C, Ln2C3 तथा LnC2 बनते हैं।

ये तनु अम्लों से हाइड्रोजन गैस मुक्त करती हैं तथा हैलोजन के वातावरण में जलने पर हैलाइड बनाती हैं। ये ऑक्साइड M_2O_3 तथा हाइड्रॉक्साइड $M(OH)_3$ बनाती हैं। हाइड्रॉक्साइड निश्चित यौगिक हैं न कि केवल हाइड्रेटेड ऑक्साइड। ये क्षारीय मृदा धातुओं के ऑक्साइड तथा हाइड्रॉक्साइड की भाँति क्षारकीय होते हैं। इनकी सामान्य अभिक्रियाएँ चित्र में प्रदर्शित की गई हैं।

चित्र-लैन्थेनाइडों की रासायनिक अभिक्रियाएँ।

ऐक्टिनाइड (Actinides):

ऐक्टिनाइड अत्यधिक अभिक्रियाशील धातुएँ हैं, विशेषकर जब वे सूक्ष्मभाजित हों। इन पर उबलते हुए जल की क्रिया से ऑक्साइड तथा हाइड्राइड का मिश्रण प्राप्त होता है और अधिकांश अधातुओं से संयोजन सामान्य ताप पर होता है। हाइड्रोक्लोरिक अम्ल सभी धातुओं को प्रभावित करता है, परन्तु अधिकतर धातुएँ नाइट्रिक अम्ल द्वारा अल्प प्रभावित होती हैं, कारण यह है कि इन धातुओं ऑक्साइड की संरक्षी सतह बन जाती है। क्षारों का इन धातुओं पर कोई प्रभाव नहीं पड़ता।

प्रश्न 8.21 आप निम्नलिखित को किस प्रकार से स्पष्ट करेंगे:

- 1. d⁴ स्पीशीज़ में से Cr²⁺ प्रबल अपचायक है, जबिक मैंगनीज (III) प्रबल ऑक्सीकारक है।
- 2. जलीय विलयन में कोबाल्ट (II) स्थायी है, परन्तु संकुलनकारी अभिकर्मकों की उपस्थिति में यह सरलतापूर्वक ऑक्सीकृत हो जाता है।
- 3. आयनों का d¹ विन्यास अत्यन्त अस्थायी है।

उत्तर:

- 1. चूँकि Cr³⁺/Cr²⁺ के लिए E⁰ मान ऋणात्मक (-0.41 V) होता है और Mn³⁺/Mn²⁺ के लिए E⁰ मान धनात्मक (+ 1.57 V) होता है; अतः Cr आयन चूँकि ऑक्सीकृत होकर Cr⁺ आयन देते हैं, अतः Cr²⁺ प्रबल अपचायक के रूप में कार्य करता है। चूँकि Mn³⁺ सरलता से अपचयित होकर Mn²⁺ आयन देते हैं, चूँकि मैंगनीज (III) प्रबल आक्सीकरण है।
- 2. चूँकि Co (II) की तुलना में Co (III) में उपसहसंयोजक संकुल बनाने की प्रवृत्ति अधिक होती है, अतः लिगण्डों की उपस्थिति में Co (II) का Co (III) में सरलतापूर्वक ऑक्सीकरण हो जाता है।
- 3. d¹ विन्यास के आयनों में d उपकोश में उपस्थित एकल इलेक्ट्रॉन को खोकर स्थायी dº विन्यास प्राप्त करने की प्रवृत्ति होती है। अतः ये अस्थायी होते हैं तथा असमानुपातन प्रदर्शित करते हैं।

प्रश्न 8.22

असमानुपातन से आप क्या समझते हैं? जलीय विलयन में असमानुपातन अभिक्रियाओं के दो उदाहरण दीजिए। उत्तर:

ऐसी अभिक्रियाएँ जिनमें एक ही पदार्थ का ऑक्सीकरण तथा अपचयन होता है, असमानुपातन अभिक्रियाएँ कहलाती हैं। असमानुपातन अभिक्रियाओं में सम्मिलित तत्व की ऑक्सीकरण संख्या के घटने तथा बढ़ने पर दो भिन्न उत्पाद बनते हैं।

उदाहरण:

(i)
$$3\text{Cr }O_4^{3-} + 8\text{H}^+ \longrightarrow 2\text{Cr }O_4^{2-} + \text{Cr}^{\frac{+3}{3+}} + 4\text{H}_2\text{O}$$

(ii) $3\text{Mn }O_4^{2-} + 4\text{H}^+ \longrightarrow 2\text{Mn }O_4^- + \text{MnO}_2 + 2\text{H}_2\text{O}$

प्रश्न 8.23

प्रथम संक्रमण श्रेणी में कौन-सी धातु बहुधा तथा क्यों + 1 ऑक्सीकरण अवस्था दर्शाती हैं?

उत्तर:

कॉपर का इलेक्ट्रॉनिक विन्यास [Ar] 3d¹º 4s¹ है। यह एक इलेक्ट्रॉन खोकर स्थायी d¹º विन्यास देता है। अतः यह बहुधा +1 ऑक्सीकरण अवस्था दर्शाती है।

प्रश्न 8.24

निम्नलिखित गैसीय आयनों में अयुगलित इलेक्ट्रॉनों की गणना कीजए: Mn³⁺, Cr³⁺, V³⁺ Ti³⁺ इनमें से कौन-सा जलीय विलयन में अतिस्थायी है?

गणना:

आयन	इलेक्ट्रॉनिक विन्यास	अयुगलित इलेक्ट्रॉनों की संख्या
Mn ³⁺	[Ar] 3d ⁴	4
Cr3+	[Ar] 3d ³	3
V^{3+}	[Ar] $3d^2$	2
Ti ³	[Ar] 3d ¹	1

इन में Cr^{3+} जलीय विलयन अस्थाई है क्योंकि इसमें अर्द्धपूरित t_{28} स्तर होता है।

प्रश्न 8.25 उदाहरण देते हुए संक्रमण धातुओं के रसायन के निम्नलिखित अभिलक्षणों का कारण बताइए –

- 1. संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय है, जबिक उच्चतम ऑक्साइड उभयधर्मी अम्लीय है।
- 2. संक्रमण धातु की उच्चतम ऑक्सीकरण अवस्था ऑक्साइडों तथा फ्लुओराइडों में प्रदर्शित होती है।
- 3. धातु के ऑक्सोऋणायनों में उच्चतम ऑक्सीकरण अवस्था प्रदर्शित होती है।

उत्तर:

1. संक्रमण धातु का निम्नतम ऑक्साइड क्षारकीय होता है; क्योंकि धातु परमाणु निम्न ऑक्सीकरण अवस्था में होता है। निम्न ऑक्सीकरण अवस्था में आयनिक आबन्ध बनते हैं। निम्न ऑक्सीकरण अवस्था में आबन्ध बनने के दौरान कम इलेक्ट्रॉन भाग लेते हैं; इसलिए प्रभावी नाभिकीय आवेश बहुत उच्च नहीं होता है। ऑक्साइड इलेक्ट्रॉनों का दान करके क्षार के समान व्यवहार करते हैं। धातुएँ विद्युत-धनात्मक होती हैं तथा क्षारकीय ऑक्साइड बनाती हैं।

संक्रमण धातु का उच्चतम ऑक्साइड उभयधर्मी अम्लीय होता है; क्योंकि धातु परमाणु उच्च ऑक्सीकरण अवस्था में होता है। उच्च ऑक्सीकरण अवस्था में सहसंयोजी आबन्ध बनते हैं। उच्च ऑक्सीकरण अवस्था में आबन्धन में अधिक इलेक्ट्रॉन भाग लेते हैं, जिस कारण प्रभावी नाभिकीय आवेश उच्च होता है। धातु ऑक्साइड इलेक्ट्रॉन ग्रहण कर सकते हैं तथा लूइस अम्लों के समान व्यवहार करते हैं, इसलिए ऑक्साइड अम्लीय होते हैं।

- 2. संक्रमण धातु की उच्चतम ऑक्सीकरण अवस्था ऑक्साइडों तथा फ्लुओराइडों में प्रदर्शित होती है। क्योंकि ऑक्सीजन तथा फ्लुओरीन उच्च विद्युतऋणात्मक तत्व हैं तथा आकार में छोटे होते हैं। ये प्रबल ऑक्सीकारक होते हैं। उदाहरणार्थ-ऑस्मियम, OsF₆ में +6 ऑक्सीकरण अवस्था प्रदर्शित करता है तथा वेनेडियम, V₂O₅ में +5 ऑक्सीकरण अवस्था प्रदर्शित करता है।
- 3. धातु ऑक्सोऋणायनों में उच्च ऑक्सीकरण अवस्था प्रदर्शित होती है; जैसे Cr2O2-7, में Cr को ऑक्सीकरण अवस्था +6 है, जबिक MnO4⁻ में Mn की ऑक्सीकरण अवस्था +7 है। धातु का ऑक्सीजन से संयोग का कारण यह है कि ऑक्सीजन उच्च विद्युतऋणात्मक तथा ऑक्सीकारक तत्व है।

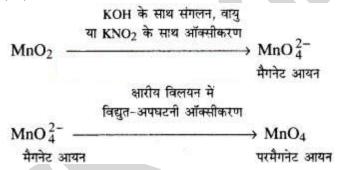
प्रश्न 8.26

निम्नलिखित को बनाने के लिए विभिन्न पदों का उल्लेख कीजिए:

- 1. क्रोमाइट अयस्क से K2Cr2O7
- 2. पाइरोलुसाइट से KMnO4

उत्तर:

1. क्रोमाइट अयस्क से K2Cr2O7:


क्रोमाइट अयस्क (FeCr₂O₄) को जब वायु की उपस्थिति में सोडियम या पोटैशियम कार्बोनेट के साथ संकलित किया जाता है तो क्रोमेट प्राप्त होता है, क्रोमाइट को साडियम कार्बोनेट के साथ अभिक्रिया निम्नलिखित प्रकार होती है: 4FeCr₂O₄ + 8Na₂CO₃ + 7O₂ → 8Na₂CrO₄ + 2Fe₂O₃ + 8CO₂↑

सोडियम क्रोमेट के पीले विलयन को छानकर उसे सल्फ्यूरिक अम्ल द्वारा अम्लीय बना लिया जाता है, जिसमें से नारंगी सोडियम डाइक्रोमेट, Na₂Cr₂O₇.2H₂O को क्रिस्टिलत कर लिया जाता है। 2Na₂CrO₄ + 2H⁺ → Na₂Cr₂O₇ + 2Na⁺ + H₂O

सोडियम डाइक्रोमेट की विलयेता, पोटैशियम डाइक्रोमेट से अधिक होती है। इसलिए सोडियम डाइक्रोमेट के विलयन में पोटैशियम क्लोराइड डालकर पोटैशियम डाइक्रोमेट प्राप्त कर लिया जाता है। Na₂Cr₂O₇ + 2KCl → K₂Cr₂O₇ + 2NaCl

2. पाइरोलुसाइट से KMnO4:

औद्योगिक स्तर पर KMnO4 का उत्पादन पाइरोलुसाइट, MnO2 के क्षारीय ऑक्सीकरणी संगलन के पश्चात् मैंगनेट (VI) के विद्युत-अपघटनी ऑक्सीकरण द्वारा किया जाता है।

प्रश्न 8.27

मिश्रातुएँ क्या हैं? लैन्थेनाइड धातुओं से युक्त एक प्रमुख मिश्रधातु का उल्लेख कीजिए। इसके उपयोग भी बताइए। उत्तर:

मिश्रातु या मिश्रधातु (alloy) विभिन्न धातुओं का सम्मिश्रण होते हैं जो कि धातुओं के समिश्रण से प्राप्त होते हैं। मिश्रातु समांगी ठोस विलयन हो सकते हैं जिनमें एक धातु के परमाणु दूसरी धातु के परमाणुओं में अनियमित रूप से वितरित रहते हैं।

इस प्रकार के मिश्रातुओं की रचनाएँ उन परमाणुओं द्वारा होती हैं जिनकी धात्विक त्रिज्याओं में 15% का अन्तर हो। एक मिश्रातु मिश धातु (misch metal) है जो एक लैन्थेनाइड धातु (~95%), आयरन (~5%) तथा लेशमात्र S, C, Ca एवं Al से बनी होती है। मिश धातु की अत्यधिक मात्रा मैग्नीशियम आधारित मिश्रातु में प्रयुक्त होती है जो बन्दूक की गोली, कवच या खोल तथा हल्के फ्लिण्ट के उत्पादन के लिए उपयोग में लाया जाता है।

प्रश्न 8.28

आन्तरिक संक्रमण तत्व क्या हैं? बताइए कि निम्नलिखित में कौन-से परमाणु क्रमांक आन्तरिक संक्रमण तत्वों के हैं: 29, 59, 74, 95, 102, 104

उत्तर:

ऐसे तत्व जिनमें अन्तिम इलेक्ट्रॉन -उपकोश में प्रवेश करता है f – ब्लॉक तत्व या आन्तरिक संक्रमण तत्व कहलाते हैं। ये दो श्रेणियाँ हैं – लैन्थेनाइड (58 – 71) तथा ऐक्टिनाइड (90 – 103) होते हैं। अत: परमाणु क्रमांक 59, 95 तथा 102 वाले तत्व आन्तरिक संक्रमण तत्व हैं।

प्रश्न 8.29

ऐक्टिनाइड तत्वों का रसायन उतना नियमित नहीं है जितना कि लैन्थेनाइड तत्वों का रसायन। इन तत्वों की ऑक्सीकरण अवस्थाओं के आधार पर इस कथन का आधार प्रस्तुत कीजिए।

उत्तर:

सभी ऐक्टिनाइड रेडियोऐक्टिव हैं। यद्यपि प्राकृतिक रूप से उपस्थित तत्व तथा श्रेणी के पूर्व सदस्यों के अर्द्ध-आयुकाल अधिक हैं, परन्तु मानवनिर्मित तत्वों की अर्द्ध-आयु कई दिनों से लेकर 3 मिनट [लॉरेन्शियम (Z = 103) के लिए] तक है। यह उच्च रेडियोऐक्टिवता इनके अध्ययन में कठिनाई उत्पन्न करती है।

इसके अतिरिक्त ऐक्टिनाइडों की ऑक्सीकरण अवस्थाएँ विस्तृत परास में होती हैं जिसके कारण इनका रसायन नियमित नहीं होता है। ऐक्टिनाइड सामान्यतया +3 ऑक्सीकरण अवस्था दर्शाते हैं। श्रेणी के प्रारम्भिक अर्द्ध-भाग वाले तत्व सामान्यतया उच्च ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं।

उदाहरणार्थ: उच्चतम ऑक्सीकरण अवस्था Th में +4 है, Pa, U तथा Np में क्रमश: +5, +6 तथा +7 तक पहुँच जाती है, परन्तु बाद के तत्वों में ऑक्सीकरण अवस्थाएँ घटती हैं। प्रारम्भ तथा बाद वाले ऐक्टिनाइडों की ऑक्सीकरण अवस्थाओं के वितरण में इतनी अधिक अनियमितता तथा विभिनन्नता पाई जाती है कि ऑक्सीकरण अवस्थाओं के सन्दर्भ में इन तत्वों के रसायन की समीक्षा करना सन्तोषजनक नहीं है।

प्रश्न 8.30

ऐक्टिनाइड श्रेणी का अन्तिम तत्व कौन-सा है? इस तत्व का इलेक्ट्रॉनिक विन्यास लिखिए। इस तत्व की सम्भावित ऑक्सीकरण अवस्थाओं पर टिप्पणी कीजिए।

उत्तर:

ऐक्टिनाइड श्रेणी का अन्तिम तत्व लॉरेन्शियम (Z = 103) है जिसका इलेक्ट्रॉनिक विन्यास निम्नलिखित है:

 $Lr (Z = 103) = [Rn]^{86} 5f^{14} 6d^{1} 7s^{2}$

Lr की सम्भावित ऑक्सीकरण अवस्था +3 है।

प्रश्न 8.31

हुण्ड-नियम के आधार पर Ce³⁺ आयन के इलेक्ट्रॉनिक विन्यास को व्युत्पन्न कीजिए तथा 'प्रचक्रण मात्र' सूत्र के आधार पर इसके चुम्बकीय आधूर्ण की गणना कीजिए।

गणना:

$$::_{58}$$
 Ce = [Xe]⁵⁴ 4f¹ 5d¹ 6s²
 $::$ Ce³⁺ = [Xe]⁵⁴ 4f¹
 $::$ Ce³⁺ का चुम्बकीय आघूर्ण (μ)
= $n(n+2)$ -----√
= $1(1+2)$ -----√ (: $n = 1$)
= $3-\sqrt{=1.73}$ B.M

प्रश्न 8.32

लैन्थेनाइड श्रेणी के उन सभी तत्वों का उल्लेख कीजिए जो +4 तथा जो +2 ऑक्सीकरण अवस्थाएँ दर्शाते हैं। इस प्रकार के व्यवहार तथा उनके इलेक्ट्रॉनिक विन्यास के बीच सम्बन्ध स्थापित कीजिए।

उत्तर:

लैन्थेनाइड श्रेणी के +4 ऑक्सीकरण अवस्था दर्शाने वाले तत्व ⁵⁸Ce, ⁵⁹Pr. ⁶⁰Nd, ⁶⁵Tb, ⁶⁶Dy हैं। लैन्थेनाइड श्रेणी के +2 ऑक्सीकरण अवस्था दर्शाने वाले तत्व ⁶⁰Nd, ⁶²Sm, ⁶³Eu, ⁶⁹Tm, ⁷⁰ Yb हैं। +2 ऑक्सीकरण अवस्था तब प्रदर्शित की जाती है, जबिक लैन्थेनाइडों का विन्यास 5d⁰ 6s² होता है जिसमें 2 इलेक्ट्रॉन सरलतापूर्वक निकल सकें। +4 ऑक्सीकरण अवस्था तब प्रदर्शित की जाती है, जबिक लैन्थेनाइडों का शेष विन्यास 4f⁰ (जैसे – 4f⁰, 4f¹, 4f²) या 4f⁷ (जैसे – 4f⁷ या 458) पर समाप्त हो।

प्रश्न 8.33

निम्नलिखित के सन्दर्भ में ऐक्टिनाइड श्रेणी के तत्वों तथा लैन्थेनाइड श्रेणी के तत्वों के रसायन की तुलना कीजिए -

- 1. इलेक्ट्रॉनिक विन्यास
- 2. ऑक्सीकरण अवस्थाएँ
- 3. रासायनिक अभिक्रियाशीलता।

उत्तर:

अभ्यास प्रश्न संख्या २० का उत्तर देखिए।

प्रश्न 8.34

61, 91, 101 तथा 109 परमाणु क्रमांक वाले तत्वों का इलेक्ट्रॉनिक विन्यास लिखिए। उत्तर:

परमाणु, क्रमांक (प्रोमेथियम, Pr) वाले का इलेक्ट्रॉनिक विन्यास, $= [Xe]^{54} \ 4f^5 5d^0 6s^2$ परमाणु क्रमांक 91 (प्रोटेक्टिनियम, Pa) वाले का इलेक्ट्रॉनिक विन्यास, $= [Rn]^{86} \ 5f^2 \ 6d^1 7s^2$ परमाणु क्रमांक 101 (मेण्डेलीवियम, Md) वाले का इलेक्ट्रॉनिक विन्यास $= [Rn]^{86} \ 5f^{13} \ 6d^0 7s^2$ परमाणु क्रमांक 109 (मेटनेरियम, Mt) वाले का इलेक्ट्रॉनिक विन्यास $= [Rn]^{86} \ 5f^{14} \ 6d^7 7s^2$

प्रश्न 8.35

प्रथम श्रेणी के संक्रमण तत्वों के अभिलक्षणों की द्वितीय एवं तृतीय श्रेणी के वर्गों के तत्वों से क्षैतिज वर्गों में तुलना कीजिए। निम्नलिखित बिन्दुओं पर विशेष महत्व दीजिए:

- 1. इलेक्ट्रॉनिक विन्यास
- 2. ऑक्सीकरण अवस्थाएँ
- 3. आयनन एन्थेल्पी
- 4. परमाण्वीय आकार।

उत्तर:

1. इलेक्ट्रॉनिक विन्यास:

लैन्थेनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Xe]⁵⁴ 4f¹⁻¹⁴ 5d⁰⁻¹ 6s² होता है, जबिक ऐक्टिनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Rn]⁸⁶ 5f¹⁻¹⁴ 6d⁰⁻¹ 7s² होता है। अतः लैन्थेनाइड 4f श्रेणी से तथा ऐक्टिनाइड 5f श्रेणी से सम्बद्ध होते हैं।

2. ऑक्सीकरण अवस्था:

लैन्थेनाइड सीमित ऑक्सीकरण अवस्थाएँ (+ 2, +3, +4) प्रदर्शित करते हैं जिनमें +3 ऑक्सीकरण अवस्था सबसे अधिक सामान्य है। इसका कारण 4f, 5d तथा 6s उपकोशों के बीच अधिक ऊर्जा-अन्तर होना है। ऐक्टिनाइड अधिक संख्या में ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं; क्योंकि 5f, 6d तथा 7s उपकोशों में ऊर्जा-अन्तर कम होता है।

3. आयनन एन्थैल्पी (Ionization Enthalpy):

प्रत्येक श्रेणी में बाएँ से दाएँ जाने पर प्रथम आयनन एन्थैल्पी सामान्यतया धीरे-धीरे बढ़ती है, यद्यपि प्रत्येक श्रेणी में कुछ अपवाद भी प्रेक्षित होते हैं। समान क्षैतिज वर्ग में 3d श्रेणी के तत्वों की तुलना में 4d श्रेणी के कुछ तत्वों की प्रथम आयनन एन्थैल्पी उच्च तथा कुछ तत्वों की कम होती है, यद्यपि 5d श्रेणी की प्रथम आयनन एन्थैल्पी 3d तथा 4d श्रेणियों की तुलना में उच्च होती है। इसका कारण 5d श्रेणी में 4f इलेक्ट्रॉनों पर नाभिकर का दुर्बल परिरक्षण प्रभाव है।

4. परमाण्वीय एवं आयनिक आकार:

लैन्थेनाइड तथा ऐक्टिनाइड दोनों +3 ऑक्सीकरण अवस्था में अपने परमाणुओं अथवा आयनों के आकारों में कमी प्रदर्शित करते हैं। लैन्थेनाइडों में यह कमी लैन्थेनाइड आकुंचन कहलाती है, जबिक ऐक्टिनाइडों में यह ऐक्टिनाइड आकुंचन प्रभाव के कारण आकुंचन उत्तरोत्तर बढ़ता है।

प्रश्न 8.36

निम्नलिखित आयनों में प्रत्येक के लिए 3d इलेक्ट्रॉनों की संख्या लिखिए:

Ti²⁺, V²⁺, Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, CO²⁺, Ni²⁺, Cu²⁺ आप इन जलयोजित आयनों (अष्टफलकीय) में पाँच 3d कक्षकों को किस प्रकार अधिगृहीत करेंगे? दर्शाइए।

उत्तर:

• (1)	•						
Ti ²⁺	$3d^2$	1	1				
V ²⁺	$3d^3$	1	1	1			
Cr3+	$3d^3$	1	1	1		no.Lec	
Mn ²⁺	$3d^5$	1	1	1	1	1	
Fe ²⁺	$3d^6$	↑↓	1	1	1	1	
Fe ³⁺	$3d^5$	1	1	1	1	1	
Co ²⁺	$3d^7$	1	↑↓	1	1	. 1	
Ni^{2+}	$3d^8$	↑↓	↑↓	↑↓	1	1	
Cu ²⁺	$3d^9$	$\uparrow\downarrow$	1	$\uparrow\downarrow$	↑↓	1	
$\operatorname{Ti}^{2+}: (\iota_{2g})^2 \bigcirc e_g$							
$\mathbf{V}^{2+}:(t_{2g})^3$ ्रि t_{2g} अयुगलित इलेक्ट्रॉन							
$\operatorname{Cr}^{3+}:(t_{2g})^3$ \bigcirc e_g \bigcirc \uparrow \uparrow \uparrow \downarrow							
$\operatorname{Mn}^{2+}:(t_{2g})^3(e_g)^2$ $\begin{array}{c} \textcircled{\uparrow} \textcircled{\uparrow} e_g \\ \textcircled{\uparrow} \textcircled{\uparrow} \textcircled{\uparrow} t_{2g} \\ \end{array}$ 5 sugnifical schaetia							
Fe $^{3+}$: $(t_{2g})^3$ $(e_g)^2$							
$\operatorname{Co}^{2+}:(t_{2g})^5(e_g)^2$							
$\operatorname{Ni}^{2+}:(t_{2g})^6(e_g)^2$							
$\operatorname{Cu}^{2+}:(t_{2g})^6(e_g)^3$ ्रि							

प्रश्न 8.37

प्रथम संक्रमण श्रेणी के तत्व भारी संक्रमण तत्वों के अनेक गुणों से भिन्नता प्रदर्शित करते हैं। टिप्पणी कीजिए। उत्तर:

प्रथम संक्रमण श्रेणी के तत्व भारी संक्रमण तत्वों के गुणों से भिन्नता निम्न प्रकार दर्शाते हैं -

- भारी संक्रमण तत्वों (4d तथा 5d श्रेणियाँ) की परमाणु त्रिज्याएँ प्रथम संक्रमण श्रेणी (3d) के सम्बन्धित तत्वों से अधिक होती हैं, यद्यपि 4d तथा 5d श्रेणियों की परमाणु त्रिज्याएँ लगभग समान होती हैं।
- 2. 5d श्रेणी की आयनन एन्थैल्पियाँ 3d तथा 4d श्रेणियों के सम्बन्धित तत्वों से उच्च होती है।

- 3. 4d तथा 5d श्रेणियों की कणन एन्थैल्पियाँ प्रथम श्रेणी के सम्बन्धित तत्वों से उच्च होती हैं।
- 4. भारी संक्रमण तत्वों के गलनांक तथा क्वथनांक प्रथम संक्रमण श्रेणी की तुलना में अधिक होते हैं क्योंकि इनमें प्रबल अन्तराधात्विक बन्धों की उपस्थिति है।

प्रश्न 8.38 निम्नलिखित संकुल स्पीशीज़ के चुम्बकीय आघूर्णों के मान से आप क्या निष्कर्ष निकालेंगे?

उदाहरण	चुम्बकीय आघूर्ण (B.M.)		
$K_4[Mn(CN)_6]$	2.2		
$\left[\mathrm{Fe}(\mathrm{H_2O})_6\right]^{2+}$	5.3		
K ₂ [MnCl ₄]	5.9		

उत्तर:

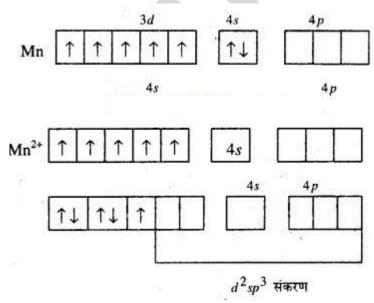
चुम्बकीय आघूर्ण (μ) = n(n+2)---- $\sqrt{B.M.}$

जहाँ n = अयुगलित इलेक्ट्रॉनों की संख्या

n = 1 के लिए =
$$\mu$$
 = 1(1+2)---- $\sqrt{}$ = 3- $\sqrt{}$ = 1.73 B.M.

n = 2 के लिए =
$$\mu$$
 = 2(2+2)----- $\sqrt{}$ = 8- $\sqrt{}$ = 2.83 B.M.

n = 3 के लिए =
$$\mu$$
 = 3(3+2)---- $\sqrt{}$ = 15)--- $\sqrt{}$ = 3.87 B.M.

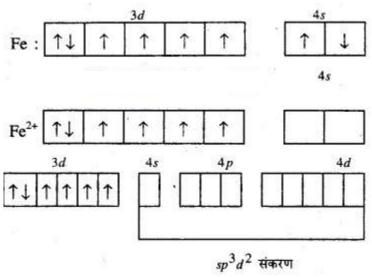

$$n = 4$$
 के लिए $\mu = 4(4+2)$ ---- $\sqrt{=24}$ - $\sqrt{=4.9}$ B.M.

n = 5 के लिए
$$\mu$$
 = (5(5+2)----- $\sqrt{}$) = 35)--- $\sqrt{}$ = 5.92 B.M.

$K_4Mn(CN)_6$:

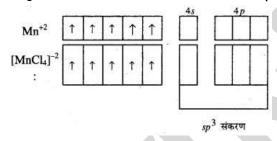
यहाँ की Mn की ऑक्सीकरण +2 है। अत: Mn, M²⁺ अवस्था में है।

μ = 2.2 B.M.से यह पता चलता कि इसमें एक युगलित इलेक्ट्रॉन है, अतः जब CN- लिगेण्ड Mn²+ से जुड़ता है। तो 3d – कक्षकों के इलेक्ट्रॉन युगलित होकर उपलब्ध 6 रिक्त कक्षक बनाते हैं जिसमें d²sp³ संकरण प्रयुक्त होता है।



अतः यह अल्प प्रचक्रण संकुल है जिसमें एक अयुगलित इलेक्ट्रॉन है।

$[Fe(H_2O)_6]^{2+}$:


यहाँ Fe की ऑक्सीकरण अवस्था +2 है जिस का रूप Fe²⁺ है।

5.3 B.M. यह दर्शाता है कि संकुल में चार अयुगलित इलेक्ट्रॉन हैं। इससे तात्पर्य है कि Fe²⁺ आयन में इलेक्ट्रॉन युगलित नहीं होते हैं जब छ: H₂O अणु इससे जुड़ते हैं। अत: H₂O एक दुर्बल लिगेण्ड है। इन छ: H₂O अणुओं द्वारा दिये गये इलेक्ट्रॉनों को समायोजित करने के लिए संकुल sp³d² संकरण वाला होगा।

$K_2[MnCl_4]$:

यहाँ Mn की ऑक्सीकरण अवस्था +2 है जिस का रूप Mn²+ है। 5.9 B.M. से यह दर्शाता है कि इसमें 5 अयुगलित इलेक्ट्रॉन हैं। अत: यह संकरण sp³ है और संकुल चतुष्फकीय प्रकृति का है।

